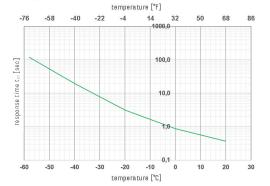


HMC03M

Heated Humidity Sensor for Radiosondes and Weather Balloons

HMC03M is optimized for short response time even at very low temperature (T) in the upper atmosphere. It combines on a silicon substrate a capacitive relative humidity (RH) sensor and a heating resistor (heater).

The heater is dedicated for fast recovery of the humidity sensor after condensation or icing. The construction with the heater positioned all around the RH sensor grants uniform temperature throughout the HMC03M structure, which leads to outstanding measuring performance in high-end weather observation.


Features

Very short RH response time at low T Fast recovery after condensation or icing due to sensor heating High sensitivity

Technical Data

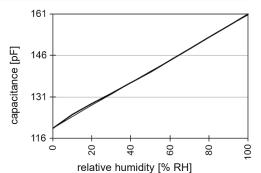
Humidity sensor

Nominal capacitance C ₀ (at 30 °C / 86 °F)	120 ± 40 pF
Sensitivity (for C ₀ = 120 pF, in average)	0.41 pF / % RH ¹⁾
Working range Humidity	0100 % RH
Temperature	-8060 °C (-112140 °F)
Linearity error (098 % RH)	< ± 2 % RH
Hysteresis	1.9 ± 0.25 % RH
Response time RH t ₆₃	temperature [°F]

T	-IO - 0 004.4*DU*/T 00 00\ [:- E]		
Temperature dependence ²⁾	dC = -0.0014*RH*(T-30 °C) [pF]		
Loss tangent	< 0.05		
Supply voltage	5 V max (V _{PP})		
DC voltage	< 5 mV		
Operating frequency	10100 kHz, recommended 20 kHz		
Heater (Molybdenum)			
Nominal resistance R ₀	100 ± 20 Ohm		
Temperature coefficient	3500 ± 150 ppm/K		
Self heating coefficient (SHC), typical (at 980 hPa)			
5 m/s	0.09 K/mW		
1 m/s	0.17 K/mW		
0.1 m/s	0.31 K/mW		
Max. power	100 mW		

¹⁾ More details see "Characteristics

²⁾ Basic formula. Details for t < -20 °C on request


Characteristics

Humidity sensor

$$C(RH) = C_0 * [1 + HC_0 * RH]$$
, where HC₀ = 3420 ± 250 ppm / % RH

Alternatively, a polynomial approximation of the characteristic can be used for high accuracy requirements:

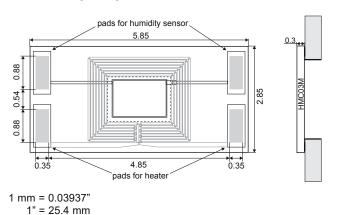
$$C(RH) = C_0 * [1 + HC_0 * RH + K(RH)], \text{ where}$$

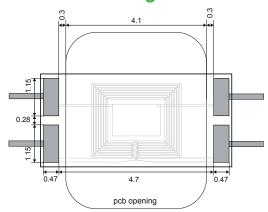
 $K(RH) = A_1 * RH + A_2 * RH^{1.5} + A_3 * RH^2 + A_4 * RH^{2.5}$
 $A_1 = 2.6657*10^{-3}$ $A_2 = -9.6134*10^{-4}$
 $A_3 = 1.1272*10^{-4}$ $A_4 = -4.3*10^{-6}$

Heater

R(t) =
$$R_0 * \{1 + \alpha * t * [1 + (\beta + \gamma * t^2) * (\frac{t}{100} - 1)]\}$$
, where
 $\alpha = 0.0031 \pm 0.00015$ $\beta = 0.0086$ $\gamma = -5.6*10^{-7}$ for $t < 0$ °C (32 °F) $\gamma = 0$ for $t \ge 0$ °C (32 °F)

Alternative formula according IEC60751:


$$R(t) = R_0 * (1 + A * t + B * t^2 + C * (t - 100) * t^3)$$
, where $A = \alpha * (1 - \beta)$ $B = \frac{\alpha * \beta}{100}$ $C = \frac{\alpha * \gamma}{100}$


Example for TK = 3100 ppm/°C

$$A = 0.0030733 \qquad B = 2.666*10^{-7} \quad C = -1.736*10^{-11} \text{ for } t < 0 \text{ °C } (32 \text{ °F}) \qquad C = 0 \text{ for } t \ge 0 \text{ °C } (32 \text{ °F})$$

Dimensions (mm)

Mounting Instructions

For shortest response time, in case of mounting onto a printed circuit board (PCB), HMC03M shall be positioned over an opening to allow enough air circulation around the sensor.

For best accuracy it is important to avoid moisture accumulation such as at the edge of the PCB by selecting appropriate board material or gold-plating the edge of the opening.

Assembling and Soldering

HMC03M is an SMD (surface mounted device) sensor, appropriate for automatic assembling with subsequent reflow soldering. Please refer to the Handling Instructions at www.epluse.com/hmc03m.

Ordering Guide

Order Example

TYPE		TAPE AND REEL PACKAGING		
HMC03M	HMC03M	500 sensors	TR0,5	Type
		1000 sensors	TR1	Type: Packaging:
		2500 sensors	TR2,5	

2 www.epluse.com v1.3 / Modification rights reserved HMC03M